# Trigonometric Values of Special Angles

$\alpha =0°=2\mathrm{\pi }$

 $0$ $1$ $0$ $+\infty$

$\alpha =30°=\frac{\mathrm{\pi }}{6}$

 $\frac{1}{2}$ $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{3}}{3}$ $\sqrt{3}$

$\alpha =45°=\frac{\mathrm{\pi }}{4}$

 $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$ $1$ $1$

$\alpha =60°=\frac{\mathrm{\pi }}{3}$

 $\frac{\sqrt{3}}{2}$ $\frac{1}{2}$ $\sqrt{3}$ $\frac{\sqrt{3}}{3}$

$\alpha =90°=\frac{\mathrm{\pi }}{2}$

 $1$ $0$ $+\infty$ $0$
$\alpha =120°=\frac{\mathrm{2\pi }}{3}$

 $\frac{\sqrt{3}}{2}$ $-\frac{1}{2}$ $-\sqrt{3}$ $-\frac{\sqrt{3}}{3}$

$\alpha =135°=\frac{\mathrm{3\pi }}{4}$

 $\frac{\sqrt{2}}{2}$ $-\frac{\sqrt{2}}{2}$ $-1$ $-1$

$\alpha =150°=\frac{\mathrm{5\pi }}{6}$

 $\frac{1}{2}$ $-\frac{\sqrt{3}}{2}$ $-\frac{\sqrt{3}}{3}$ $-\sqrt{3}$

$\alpha =180°=\pi$

 $0$ $-1$ $0$ $-\infty$

$\alpha =210°=\frac{7\mathrm{\pi }}{6}$

 $-\frac{1}{2}$ $-\frac{\sqrt{3}}{2}$ $\frac{\sqrt{3}}{3}$ $\sqrt{3}$

$\alpha =225°=\frac{5\pi }{4}$

 $-\frac{\sqrt{2}}{2}$ $-\frac{\sqrt{2}}{2}$ $1$ $1$

$\alpha =240°=\frac{4\mathrm{\pi }}{3}$

 $-\frac{\sqrt{3}}{2}$ $-\frac{1}{2}$ $\sqrt{3}$ $\frac{\sqrt{3}}{3}$

$\alpha =270°=\frac{3\mathrm{\pi }}{6}$

 $-1$ $0$ $-\infty$ $0$

$\alpha =300°=\frac{\mathrm{5\pi }}{3}$

 $-\frac{\sqrt{3}}{2}$ $\frac{1}{2}$ $-\sqrt{3}$ $-\frac{\sqrt{3}}{3}$

$\alpha =315°=\frac{7\mathrm{\pi }}{4}$

 $-\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$ $-1$ $-1$

$\alpha =330°=\frac{11\mathrm{\pi }}{6}$

 $-\frac{1}{2}$ $\frac{\sqrt{3}}{2}$ $-\frac{\sqrt{3}}{3}$ $-\sqrt{3}$

Keywords: Trigonometric Values of Special Angles