MR-926. problem

An isosceles triangle with a side twice the base is inscribed in a circle of unit radius. What is the radius of the circle inscribed in the triangle?

AECADE

2·a2=a2x

a·x=a2

x=12

x2+2a2=22

122+2a2=22

14+4·a2=4 |·4

1+16·a2=16

16·a2=16-1

16·a2=15

a2=1516

a=154

ya2=x2a

y·2·a=x·a2

y=12·x·12

y=14·x

y=14·12

y=18

The radius of a circle inscribed in a triangle can be calculated most easily using the area of ​​the triangle.

T=a·m2=r·s=ra+2a+2a2

a·m2=r·5·a2

m=5·r

r=m5

m=2-y=2-18

m=168-18

m=158

r=m5=158·15

r=38