MR-923. problem

The bases of a trapezoid are 12 and 8 cm. Connect the third points of the legs parallel to the bases and determine the length of the resulting segments.

Based on Thales' second theorem, i.e. the similarity of triangles:

c:p=d:q  I

12:8=d+q:q  II

12:x=d+q:q+d3  III

x:8=q+d3:q  IV

II 8·d+q=12·q

III x·d+q=12·q+d3

Dividing the two equations above:

x8=12·q+d312·q

x8=qq+d3·q

x8=1+13·dq

x=8·1+13·dq

II 12·q=8·d+q

12=8·d+qq

12=8·1+dq

128=1+dq

dq=128-1

dq=12-88

x=8·1+13·12-88

y=8+2·12-83

x=8+43

x=9,33

In the case of the y-section, the only difference is that the ratio is not one-third but two-thirds. Accordingly:

y=8·1+23·12-88

y=81+23·48

y=8+23·4

y=10,67