Solve the following equation:
t!=t3-t
t·t-1!=t3-t
t·t-1!=t·t2-1
t-1·t-2!=t-1·t+1
t-2!=t+1
k=t-2
t=k+2
k!=k+2+1
k!=k+3
k·k-1!=k+3
k·k-1!-k=3
kk-1!-1=3
I→1·3=3 ; II→3·1=3
First case is impossible.
Second case:
3·1=3
k=3
3=3·3-1!-1
3=3·2!-1
3=3·1
t=3+2
t=5
n!=n·n-1·n-2·n-3·...·2·1
a2-b2=a-b·a+b